Рабочая программа по учебному предмету «Математика» (6 класс, базовый уровень, индивидуальное обучение)
РАБОЧАЯ ПРОГРАММА
по учебному предмету "Математика", базовый уровень
(индивидуальное обучение на дому ученика 6 класса)
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Статус документа
Настоящая программа по математике составлена для учащихся класса на основе следующих документов:
государственный образовательный стандарт начального общего, основного общего среднего (полного) общего образования (федеральный и национально-региональный компонент);
региональный базисный учебный план ( БУП РТ -2010) для общеобразовательных учреждений Республики Татарстан,
федеральной Примерной программы основного общего образования.
федеральный перечень учебников, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях, реализующих образовательные программы общего образования и имеющих государственную аккредитацию, на 2012/2013 учебный год;
требования к оснащению образовательного процесса в соответствии с содержательным наполнением учебных предметов федерального компонента государственного стандарта общего образования;
приказ МОиН РТ от 07.06.06г. №1255/6 «Об утверждении регионального базисного учебного плана и примерных учебных планов для образовательных учреждений республики Татарстан, реализующих программы общего образования»
приказ МО и Н РТ от 29 апреля 2010 года № 1763/10 «Об утверждении порядка разработки рабочих программ учебных курсов, предметов образовательными учреждениями Республики Татарстан»; локальный акт «Положение об организации индивидуального обучения больных детей на дому " МБОУ «Гимназия №1 имени Ризы Фахретдина" г.Альметьевск.
Рабочая программа по математике индивидуального обучения на дому ученика 6д класса Фаррахова Шамиля составлена на основе Примерной программы основного общего образования по математике в соответствии с федеральным компонентом государственного стандарта и с учетом рекомендаций авторских программ Виленкин Н.Я., с учётом особенностей развития и возможностей обучающегося, сложности структуры их дефекта, особенностей эмоционально-волевой сферы, характера течения заболевания. Основным принципом организации образовательного процесса для детей данной категории является обеспечение щадящего режима проведения занятий.
Согласно базисному учебному плану средней (полной) школы, рекомендациям Министерства образования Российской Федерации и в продолжение начатой в 5 классе линии, выбрана данная учебная программа и учебно-методический комплект.
Учебно-методический комплект:
1. Математика 6, Н.Я. Виленкин. , 20011г
Особенность рабочей программы
Обучение осуществляется с 2.09.13 года только на дому, в пределах часов, отведенных учебным планом гимназии. Всего 22 час, в неделю – 2 часа.
Цели изучения учебного курса
овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;
развитие вычислительных и формально-оперативных алгебраических умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов (физика, химия, основы информатики и вычислительной техники), усвоение аппарата уравнений и неравенств как основного средства математического моделирования прикладных задач, осуществление функциональной подготовки школьников. В ходе изучения курса обучающиеся овладевают приёмами вычислений на калькуляторе.
Требования к уровню подготовки обучающихся в6 классе
В результате изучения математики ученик должен знать/понимать
существо понятия математического доказательства, приводить примеры доказательств;
существо понятия алгоритма; приводить примеры алгоритмов;
как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
как потребности практики привели математическую науку к необходимости расширения понятия числа;
примеры статистических закономерностей и выводов;
Математика
уметь
выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику;
выполнять арифметические действия с натуральными числами, обыкновенными и десятичными дробями;
выполнять простейшие вычисления с помощью микрокалькулятора;
решать текстовые задачи арифметическим способом; составлять графические и аналитические модели реальных ситуаций;
составлять алгебраические модели реальных ситуаций и выполнять простейшие преобразования буквенных выражений;
решать уравнения методом отыскания неизвестного компонента действия (простейшие случаи);
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
выполнения расчетов по формулам, для составления формул, выражающих зависимости между реальными величинами; для нахождения нужной формулы в справочных материалах;
моделирования практических ситуаций и исследовании построенных моделей с использованием аппарата алгебры;
описывания зависимостей между физическими величинами соответствующими формулами, при исследовании несложных практических ситуаций;
интерпретации графиков реальных зависимостей между величинами.
Критерии и нормы оценки знаний, умений и навыков обучающихся по математике. 1. Оценка письменных контрольных работ обучающихся по математике.
Ответ оценивается отметкой «5», если:
работа выполнена полностью;
в логических рассуждениях и обосновании решения нет пробелов и ошибок;
в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).
Отметка «4» ставится в следующих случаях:
работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).
Отметка «3» ставится, если:
допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.
Отметка «2» ставится, если:
допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.
Отметка «1» ставится, если:
работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.
Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.
2.Оценка устных ответов обучающихся по математике
Ответ оценивается отметкой «5», если ученик:
полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;
правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;
отвечал самостоятельно, без наводящих вопросов учителя;
возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.
Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:
в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;
допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.
Отметка «3» ставится в следующих случаях:
неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);
имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.
Отметка «2» ставится в следующих случаях:
не раскрыто основное содержание учебного материала;
обнаружено незнание учеником большей или наиболее важной части учебного материала;
допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.
Отметка «1» ставится, если:
ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу.
Общая классификация ошибок.
При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.
3.1. Грубыми считаются ошибки:
незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;
незнание наименований единиц измерения;
неумение выделить в ответе главное;
неумение применять знания, алгоритмы для решения задач;
неумение делать выводы и обобщения;
неумение читать и строить графики;
неумение пользоваться первоисточниками, учебником и справочниками;
потеря корня или сохранение постороннего корня;
отбрасывание без объяснений одного из них;
равнозначные им ошибки;
вычислительные ошибки, если они не являются опиской;
логические ошибки.
неточность графика;
нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);
нерациональные методы работы со справочной и другой литературой;
неумение решать задачи, выполнять задания в общем виде.
3.3. Недочетами являются:
нерациональные приемы вычислений и преобразований;
небрежное выполнение записей, чертежей, схем, графиков.
3.2. К негрубым ошибкам следует отнести:
неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;
Составлено на основании письма Мин. просв. № 117 – М от 10. 03. 1977 и программы по математике 1992 г
Учебно-тематический план
№ |
Разделы курса |
Количество часов в рабочей программе |
1 |
Делимость чисел |
6 |
2 |
Сложение и вычитание дробей с разными знаменателями |
8 |
3 |
Умножение и деление обыкновенных дробей |
8 |
Содержание тем учебного курса
1.Делимость чисел. Цель:
Делители и кратные. Признаки делимости на10, на 5и на 2.Признаки делимости на 9 и на 3. Простые и составные числа. Разложение на простые множители. Наибольший общий делитель. Взаимно простые числа. Наименьшее общее кратное.
2. Сложение и вычитание дробей с разными знаменателями. Цель:
Основное свойство дроби. Сокращение дробей. Приведение дробей к общему знаменателю. Сравнение дробей с разными знаменателями. Сложение и вычитание смешанных чисел.
3.Умножение и деление обыкновенных дробей. Цель:
Умножение дробей. Нахождение дроби от числа. Применение распределительного свойства умножения. Взаимно обратные числа. Деление. Нахождение числа по его дроби. Дробные выражения.
Календарно-тематическое планирование( 2 часа в неделю, всего 22 час)
[Таблица не отображается. Чтобы просмотреть таблицу, скачайте файл урока в начале страницы]